Activity 14, "Series and Parallel Circuits"
 from

Science \& Global Issues: Global Energy \& Power

This material is based upon work supported by the National Science Foundation under Grant No. ESI-0352453. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
©2014 The Regents of the University of California

Published by:

17 Colt Court
Ronkonkoma NY 11779
Website: www.lab-aids.com

Series and Parallel Circuits

LABORATORY • 2-3 CLASS SESSION

OVERVIEW

Students build and compare series and parallel circuits. They apply what they have discovered about Ohm's law to analyze current, voltage, and resistance in series and parallel connections.

Next Generation Science Standards (NGss)
DISCIPLINARY CORE IDEAS
PS.3.A: Definitions of Energy
ETS.1.A: Defining and Delimiting Engineering problems
SCIENCE AND ENGINEERING PRACTICES
Analyzing and Interpreting Data
Obtaining, Evaluating, and Communicating Information
Planning and Carrying Out Investigations
Using Mathematics and Computational Thinking
CROssCUTTING coNCEPTS
Cause and Effect
Energy and Matter
Scale, Proportion, and Quantity
Structure and Function

KEY CONTENT

1. The current through elements of a circuit connected in series is the same at all points in the circuit, regardless of the resistance of the elements.
2. The voltage across elements connected in parallel is the same, regardless of the resistance of the elements.
3. At any node or junction in a circuit, the sum of the currents flowing into the junction is equal to the sum of the currents flowing out of it (Kirchhoff's junction law).
4. The sum of the voltages around any closed loop in a circuit is zero (Kirchhoff's loop law).
5. For elements in a circuit that are connected in series, the cumulative resistance of all the elements is equal to the sum of the individual resistances.
6. For elements in a circuit that are connected in parallel, the cumulative resistance of all the elements is given as

MATERIALS AND ADVANCE PREPARATION

For the teacher

Scoring Guide: designing investigations (Di)
Scoring Guide: understanding concepts (UC)
Scoring Guide: organizing data (OD)
Student Sheet 14.1, "Sample Procedure: Series and Parallel Circuits (optional)
Science Skills Student Sheet 4, "Elements of Good Experimental Design" (optional)
Literacy Transparency 3, "Read, Think, and Take Note Guidelines" (optional)

For each group of four students

2 wires with clips
2 D cells in holder
2 Cir-Kit incandescent lightbulbs (2.5 V)
3 Cir-Kit component holders
2 82- Ω resistors
$120-\Omega$ resistor
8 Cir-Kit slides
14 Cir-Kit junctions
Cir-Kit switch
Cir-Kit ammeter
Cir-Kit voltmeter

For each student

graph paper*
3-5 sticky notes
Student Sheet 14.1, "Sample Procedure: Series and Parallel Circuits" (optional)

Scoring Guide: designing investigations (di) (optional)
Scoring Guide: understanding concepts (UC) (optional)
Scoring Guide: organizing data (od) (optional)
${ }^{*}$ Not supplied in kit
Masters for Scoring Guides are in Teacher Resources IV: Assessment. Masters for Literacy Transparencies are in Teacher Resources III: Literacy. Masters for Science Skills Sheets are in Teacher Resources II: Diverse Learners.
$\frac{1}{R_{\text {total }}}=\Sigma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \cdots\right)$

TEACHING SUMMARY

Getting Started

- Formally introduce the terms series and parallel

Doing the Activity

- Students conduct a qualitative investigation.
- (Di, od assessment) Students design and conduct a quantitative investigation.
- (literacy) Students read the Technology Connection.

Follow-up

- (UC ASSESSMENT)(LIteracy) Review the class results and how the total resistance is determined when resistors are connected in series and in parallel.

BACKGROUND INFORMATION

Series Circuits

When circuit elements, such as lightbulbs, are connected in series, current from one side of a battery to the other must pass through all the elements in succession. The current is the same through each element, and through the battery. However, the voltages across each element can differ, depending on the resistance of the element. The sum of all the voltages across the elements will equal the voltage across the battery.

The equivalent resistance of all the circuit elements connected in series is given by

$$
R_{\text {eq. }}=R_{1}+R_{2}+R_{3}+\ldots
$$

For example, if there are three lightbulbs in series with unequal resistances as shown below, the equivalent resistance of all three combined will be:

$$
R_{\text {eq. }}=R_{1}+R_{2}+R_{3}=1 \Omega+2 \Omega+3 \Omega+=6 \Omega
$$

Parallel Circuits

When circuit elements are connected in parallel, the current is allowed to split and travel through multiple circuit elements simultaneously before returning to the other side of the battery. The voltage across each pathway is the same and is equal to the voltage across the battery. However, the currents through each circuit element can differ, depending on the resistance of the element. The sum of all the currents through each circuit element will equal the current through the battery.

The equivalent resistance of all the circuit elements connected in parallel is given by

$$
\frac{1}{\mathrm{R}_{\text {total }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots
$$

For example, if we have three lightbulbs in parallel, as shown below, the total resistance of all three combined will be:

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{\text {total }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}} \\
& =1 \Omega+1 / 2 \Omega+1 / 3 \Omega \\
& =1.83 \Omega^{-1} \\
& \mathrm{R}_{\text {total }}=0.55 \Omega
\end{aligned}
$$

Kirchhoff's loop rule is true for both parallel and series circuits. For a series circuit, there is only one "loop" to follow. But for two lightbulbs connected in parallel, there are multiple loops or paths of current. The voltages across each path will follow the loop rule. For example, the series circuit at right contains two identical lightbulbs with 0.75 V going across, and the voltage across the battery is 1.5 V . The parallel circuit below also contains two identical lightbulbs. The voltage across each one is 1.5 V , and the voltage across the battery is also 1.5 V .

GETTING STARTED

1 Point out to students that they already have experience with circuits that have components oriented in different ways. Sometimes they have connected components in a chain, and sometimes they have connected components side by side. If you have not already done so, introduce the terms series for the chain configuration and parallel for side-by-side connections. Present actual setups or schematics from previous activities to help students see the differences in these methods of connection.

Let students know they that in this activity they will investigate how Ohm's law applies to series and parallel circuits.

14Series and Parallel Circuits

1/ Anv majes aovanctiones in the feld of dechipu deccribed by Ohmilaw. For coumple, bo yean after
 when developing the incandewcent lighthuilh No une elie. had been able to get mach a bulb to work reliable, but Etisou had a broakthrough when he realised that the filament in the bult should have a high resintance se that the current throggh the wires could below. He calculated that for a 1-2. A corrent through copper, he wouht have to wes a hinh-senstance bell eqerating at a luwer 110 V . Uhimately. his team of ciemtiats determined that carbonized cardbound in the lighttelb promifed the revintance and duralility he norght.
Eiface applied Ohumb law when he designed bome circuits with bulhs in parallel inntead of in series to lower the owerall resitance. In a parallel circuit, the componentir are set up in the circuit so that the efectrical energy has mure than spe conducting path from the baltery. This is int coutrat to a series clrcuit, where all the components in the cifult are consetial in sucorinion. Thervisonly uner path for the clectrical energy to traved in a series circuat. In this activity you will investigate how conmecting circuit com: ponents in serics of patalld affects current and reshance.

Challenge

- How do cunemt and milance change when compenents ase consected in series or pradel cimite?

DOING THE ACTIVITY

2 Make sure that students understand that the brightness of the bulb at a constant voltage is an indication of the current flowing through it.

3 Students should notice that when a second bulb is connected in series both bulbs are dimmer than for the single-bulb circuit. This indicates that less current is now flowing through the bulbs compared to when there was only one bulb. Adding the bulb in series increased the resistance, thereby reducing the current. If the two identical bulbs are of equal brightness, it can be assumed that they are receiving the same current. The bulbs are also now sharing the voltage.

When the two bulbs are connected in parallel they should be much brighter than when they were connected in series where each one was getting less current than with one bulb. In the parallel circuit the total resistance has decreased, and so the current in the circuit has increased compared to the circuit with the two bulbs connected in series. The bulbs should also be of equal brightness. Both bulbs are getting the same voltage in parallel.

5 (di assessment) The circuits that the students build are similar to those in Part A except that resistors will replace the bulbs and students connect a voltmeter and ammeter to measure voltage and current. They calculate the resistance using the values for voltage and current.

Groups should design an investigation to test series and parallel circuits using two and three resistors in each circuit. You may want to review with some groups Science Skills Student Sheet 4, "Elements of Good Experimental Design," to help students with their investigations.

Students' written work from the procedure may be scored with the designing investigations (di) Scoring Guide. Student Sheets 14.1, "Sample Procedure: Series and Parallel Circuits," show sample procedures that help guide the laboratory part of this activity for those groups who may have difficulty in designing their own experimental procedures. In combination with sample student results below, it may also serve as a sample Level -3 response.

6(od assessment) Students' written work from Procedure Step 7 may be scored with the organizing data (OD) Scoring Guide. A complete and correct response is shown on the right.

Sample Student Response: Procedure Step 7

 A. Resistors in series| $R_{1}(\Omega)$ | $R_{2}(\Omega)$ | $R_{3}(\Omega)$ | $I(m A)$ | $V(V)$ | Calculated $R(\Omega)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 82 | 82 | None | 9 | 167 | 88 |
| 85 | 120 | None | 7 | 200 | 127 |
| 82 | 82 | 120 | 5 | 280 | 175 |

B. Resistors in parallel

$R_{1}(\Omega)$	$R_{\mathbf{2}}(\Omega)$	$R_{3}(\Omega)$	$\boldsymbol{I}(\mathrm{mA})$	$\boldsymbol{V}(V)$	Calculated $\boldsymbol{R}(\Omega)$
82	82	None	31	1.3	42
82	120	None	26	1.3	50
82	82	120	41	1.3	32

Note: Although they should be close, the calculated resistance will likely not be an exact match with the actual resistance due to the combination of the tolerances of the resistors with the inaccuracies of the meter. Theoretical values for the combinations are provided in the table below. If appropriate, this would be a good time to discuss sources of error in experiments.

Title for this table?

			THEORETICAL RESISTANCE	
$\mathrm{R}_{1}(\Omega)$	$\mathrm{R}_{2}(\Omega)$	$\mathrm{R}_{3}(\Omega)$	SERIES (Ω)	PARALLEL (Ω)
82	82	None	164	41
82	120	None	202	49
82	82	120	284	31

7 The table below summarizes what students should be able to state, based on their investigations, about the relationships of V, I, and R in the circuits.

The relationship between individual resistance and total resistance in parallel circuits, however, is not as obvious as in series circuits. It is more challenging for students to discover this exact relationship, even with highly accurate meters. It is unlikely that students will be able to derive the

Sample Student Response: Procedure Step 8 Summary Table: Series and Parallel Conclusions
$\left.\begin{array}{l|l|l}\hline \text { Conclusions } & \text { Series } & \text { Parallel } \\ \hline \text { Voltage } & \begin{array}{l}\text { The voltage across } \\ \text { each resistor depended } \\ \text { on the resistance of the } \\ \text { resistor. Higher resis- } \\ \text { tances had a greater } \\ \text { voltage and vice versa. } \\ \text { The voltages across all } \\ \text { of the resistors in series } \\ \text { equal the voltage sup- } \\ \text { plied by the battery. }\end{array} & \begin{array}{l}\text { The voltage across } \\ \text { each resistor was the } \\ \text { same. }\end{array} \\ \hline \text { Current } & \begin{array}{l}\text { The current is the same } \\ \text { through all resistors. }\end{array} & \begin{array}{l}\text { The current through } \\ \text { each resistor was } \\ \text { not always the same. } \\ \text { Higher resistance } \\ \text { results in lower current } \\ \text { and vice versa. The sum } \\ \text { of the currents through } \\ \text { each branch of the } \\ \text { parallel circuit is equal } \\ \text { to the current supplied } \\ \text { by the battery. }\end{array} \\ \hline \text { Resistance } & \begin{array}{l}\text { The total resistance } \\ \text { increases. }\end{array} & \begin{array}{l}\text { The total resistance } \\ \text { is less than when the }\end{array} \\ \text { same resistors are } \\ \text { connected in series and } \\ \text { less than the value of } \\ \text { any of the individual } \\ \text { resistances. }\end{array}\right\}$
exact relationship of resistors in parallel without some assistance. So that all students will grasp the quantitative relationship for resistance in parallel circuits, carefully guide students who may need help through this relationship. In a parallel circuit, the inverse of the total resistance is equal to the sum of the inverse of the individual resistances. For example, if a $120-\Omega$ resistor is connected in parallel with an $82-\Omega$ resistor, the total resistance is
$\frac{1}{R_{\text {total }}}=\Sigma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \cdots\right)$
$\frac{1}{R_{\text {total }}}=\frac{1}{120}+\frac{1}{82}$
$=0.0205 \Omega^{-1}$
$\mathrm{R}_{\text {total }}=49 \Omega$
Students previously discovered the loop law that states the voltages in any closed path in a circuit is zero. In this activity, students learn that the sum of the currents going into any junction in a closed circuit is also zero. Although not identified as such in the student book, this relationship is known as Kirchhoff's junction law. As students work with the circuits, introduce the convention of current direction: positive (+) for currents entering a junction and negative (-) for those leaving a junction. If direction is not accounted for correctly, the sums at the junction do not make sense. Another way to present the junction law for single-voltage-source circuits is that the total current going into a junction needs to be equal to the total current going out of a junction.
(Literacy) If appropriate, project Literacy Transparency 3, "Read, Think, and Take Note Guidelines," to review with students. Begin the discussion of the Technology Connection by asking students to discuss with their partners or groups the main points of the text and their comments on their sticky notes.

FOLLOW-UP

(Literacy) In the next activity, students will rely on the content from this and previous activities to complete a circuit design challenge. After completion of the analysis questions and revisiting the challenge, consider concluding the activity by summarizing the main ideas of electrical circuits by developing a concept map.

A concept map is a graphic organizer that shows the relationships among important ideas and allows students to negotiate their own meaning of a central idea or concept. Students write the main concept, in this case electrical circuits, in the center of a piece of paper with topics placed around it. They draw a connecting line between each topic and the central concept to show that there is a relationship between the two ideas. Then, on or near the lines, they write brief descriptions of the relationships. They may draw additional lines to connect topics and fill in associated descriptions. This is the first of several activities involving concept maps. For more information, see Teachers Resources III: Literacy.

Because this activity introduces the concept-map strategy, construct this one on the board or an overhead with the whole class. Use the following list of terms from this unit to start the concept map electrical circuits:

Voltage	Series
Current	Parallel
Resistance	Electric Field
Ohm's law	

Follow these steps:

1. Write the words "electrical circuit" in the middle of your paper, and circle it.
2. Discuss with the class how the other words are related to the words electrical circuit. Sort your words into categories based on these relationships.
3. Decide on the first set of words you want to add to the concept map, and plan where to place these words on your paper. Then place the words, and circle them
4. Draw a line between the word electrical circuit and your first set of words. On the line write brief phrases to describe the relationship between the words.

A sample concept map is shown below.

Technology Connection: Electronics Power Consumption and Heat Production
All of the chatnonic items typlalily found in hones, such as TV/b gane consoles, eoenputer, and phones, redy on sophinticatel componenta. They consume slectricity ashether of net ther are dways connested to the electrical dretir in your heme or are fatt recharged from it. Because dectronic are so widespend in the developed woetid the total amount of electrical energy berded to power these devios is very high. Having efficient electronic components is important for ustainability: Frou an econoenic penpective, faving snote-energy efficient compopents will waste less rlectricity and, therefore, vill cost less to operate. Watingless efectricity alse bas envinumentai benefits because gonerating iess ofectricity produces fewer polhtants and uses fewer nutural rosources.

When you maie a prarchase online of at astare, the odlds are that your transection will be processed by a remote compater, ponibly theusands of miles a way, In fact moit large-scale iechnological applications rely on server "farms" Sah placse asf reflerred to as data centers, and they can be hoprn Google, for eample, has data ontern around the world, each with tens of thousands of serven. The mamber of sarvers in data centers around the worid almest doublest to a little under 24 milHon in 2005 from fut under 12 millices in 2000 . The mumber of servers in 2010 hes been evtimated at almout 32 million. Data centers need tremendous amounts of powzr. For example in 2005, US. data ceoternconaumed 56 billion KWh of dec tricity at an entimated cost of $\$ 27$ billion, and as mofe data crntern arr buill the power demando will hilely rise for some time into the futare. Hecent ternds at least show a slowing of the increase in pooer demandi, considering that the 100 s increase between 2000 and 2005 was followed by a 30 s iscreaic between 2005 and 2010. Huwewr. ewwn such a slowing in the rate of increase will not lead to a redoction in total electricity use.

Detmat monise

Alnost half the energy upplied to a data center is for cooling the servers All electrunic devices wate some energy br generating heat and if the beat is allowed to tuild up it can cause the device to function leaseff. diently or even to fail. Heat is produced in various parts of electronic devices but espedilly in microprocesson: Microprocesors have integrated dircuits containing traesintors located on a silicon chip about the sise of a portage itamg. The tranistors are diplal swathes that are seitched on and off milliuns of times per second to conirel the mowement of electricity around the circuit. lust 40 years apo the mumber of trimistors that coald be placed co a suggle chip was in the thoosunds, but now that the size of trambers has boen restucod the
fiem tha $\begin{aligned} & \text { niny microch } \text { ? }\end{aligned}$ romsames poow and generates worte heot number that can fit cee a chip is above I billion and is atill increasing.

Each translifue, ion niffer how fing, conenumes power and grnerifes ionte heat, and with a biltion of them on see amall dap the total umoumt of heat generated is comsiderable. As nev generations of transistors eniploy faster instiding spevis they produce mure heat, and as transituon are mive smaller there is lews area through wtich the heat can escape. A further problem occurs when trataistor siae shrinks toe fas. Helos about the site of 45 mm the transistor is wa inclisient that ©wer two-thinds of the power suppled to a chip is lost throuph lealage. Current research is investigating aliernatives to transiston as swithes. Obe idea is to use electrons themselves as nowtiches by controlling whether they ipin clockwise of countrndeckwis.

Microprocescers afe cooled in varicer iwank. A cemmon method is to increase the murface area that prleaun heat ty attaching a heat sink. The heat sink is a piece of metal with small fens. Ibe metal conducts heat away from the chip, and the fins increase the arra exposed to the air. The heat sink is often painted black because dark colarsare more entective at fadiating heat into the air. Fans may be inutalled in a device to circulateair around the chie This may range from powerful airtlow efstems in a data center for a cooling fat nn a graghtics ard in a desilop competet Since air is not a pood conductor of heat, some microgrocessors instead dirculatr a liquibt thruph nariow chaunch on the thip. The liquid atrorts some of the heat and moves it away from the chipe Using fins or liquidais not an option for mobile devices because incoeperating sich syitems into small structures or nup-

The firs on a heut sind tondifr heat ancy frow the chipn that ore generstroy the heot.
 ocrur in a mobile device is limited to convection and radiation. The modeut cooling ability of motele devices limits its esergy use and pencessine power.

If appropriate for your students, allow them to answer Analysis Questions 4 and 5 without identifying the exact ratios between quantities. Just indicating increasing or decreasing quantities is sufficient in some cases.

SAMPLE RESPONSES

1 a. When resistors are connected in series, the current was the same through each resistor and equaled the current supplied by the battery.

b. When resistors were connected in parallel the current through each resistor was not always the same. The higher the resistance the lower the amount of current that flowed through it. We also found that if we added up the current through each branch of the parallel circuit it was equal to the current supplied by the battery.
a. When resistors are connected in series the voltage across each resistor depended on the resistance of the resistor. Higher resistances had a greater voltage across them. When we added up the voltages across all of the resistors in series the sum equaled the voltage supplied by the battery.
b. When resistors were connected in parallel the voltage across each one was the same.

3 a. The total resistance in a circuit increases when resistors are connected in series. We came to this conclusion because as each resistor was added the current in the circuit decreased although the voltage supplied to the circuit had not increased.
b. The current increased in our circuit when resistors were connected in parallel. Since the voltage supplied to the circuit stayed the same (one D cell), the increased current must be due to reduced resistance.
4. In a series circuit the current is the same at all points, and if the lightbulbs are identical, they will have an identical voltage across each one. Doubling the number of lightbulbs will double the resistance in the circuit and will, therefore, halve the current; however all the bulbs will receive the same reduced current. Since the voltage of the supply is now shared across twice as many lightbulbs instead, the voltage across each bulb will be halved.
5. In a parallel circuit the voltage across each resistor is the same, and so if the resistors are identical they will each receive half of the total current. Adding two more identical resistors will halve the resistance in the circuit and will, therefore, double the total current. However, each individual resistor will still receive the same current and voltage.
6. If you unscrew (or pull out) one of the bulbs and all of the bulbs go out, that means the bulbs are connected in series because the single current path through the bulbs was broken.
7. Circuits a and d are the same. Schematic diagrams don't show the actual placement of components in a circuit.
8. A and b are parallel, d is series, and c has both series and parallel.

10(UC assessment) Students' written work from Analysis Questions 9 and 10 may be scored with the understanding concepts (UC) Scoring Guide. A complete and correct response is shown in the Sample Responses below.

Students' written work from Analysis Questions 9 and 10 can be scored with the understanding concepts (UC) Scoring Guide. Provide all students with a UC Scoring Guide, and explain to the class how you will apply it to provide feedback on the quality of their work and to assess their understanding of the key concepts in the activity.
9. (UC assessment) Students' responses will vary. A complete and correct response will show an understanding of how meters are connected in a circuit. See Background Information for Activity 7, "Discharging Capacitors," for more information on properly connecting meters.

Sample Level-3 Response

The capacitor will discharge quickest through the circuit with the lowest resistance.
a. A voltmeter is always connected in parallel with the device whose voltage it is measuring. To draw as little current as possible from the circuit, the voltmeter should have as high a resistance as possible.
b. An ammeter is always connected in series in a circuit. To reduce the current in the circuit as little as possible the ammeter should have low resistance.
10. (UC ASSESSMENT) Students' responses will vary. A complete and correct response will show an understanding that current will increase through a lower resistance. Even if students cannot calculate that the resistance will be exactly halved, they Circuit 2 has the highest resistance because it has two resistors in series.

Circuit 3 has the lowest resistance because it has two resistors in parallel. Since the resistors are equal in value the total resistance will be half of the individual resistance. Circuit 1 has a resistance in between the other two. Therefore, the order of discharge will be:

Circuit 3 = fastest
Circuit $1=$ medium
should know that connecting resistors in parallel makes the total resistance less than any of the individual resistances.
$11 \sqrt{ }$ Analysis Question 11 serves as a Quick Check assessment to ensure that students can accurately identify the key content, which is a component of the UNDERSTANDING concepts Scoring Guide.
11. $\sqrt{ }$ Students should indicate that they agree. The current entering a junction is numerically equal to the current that leaves the junction. In our experiment we found that the sum of the current in the branches equaled the current being supplied from the batteries.
12. A device is efficient if the majority of the energy supplied to it is used by the device to do its job. For example, the purpose of a lightbulb is to produce light. Any electricity supplied to the bulb that is not used for light is wasted energy. A lightbulb that produces a lot of heat wastes a lot of energy. Similarly, when a microprocessor produces a lot of heat, it is wasting a lot of energy. In addition, the devices that keep microprocessors cool (and functioning correctly) consume a energy. It takes resources to produce this energy, which often produces pollutants. To increase sustainability we need to make devices that operate in a more efficient way so that less energy is wasted.

ENRICHMENT

13. a. The resistance is equivalent to the $4-\Omega$ resistor being placed in parallel to a branch of the circuit that has the $8-\Omega$ and $2-\Omega$ resistors in series. The total resistance is

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{\text {parallel }}}=\frac{1}{4 \Omega}+\frac{1}{(8 \Omega+2 \Omega)} \\
& =\frac{7}{20 \Omega} \\
& \mathrm{R}_{\text {parallel }}=2.9 \Omega
\end{aligned}
$$

14. a. When both switches are open the circuit has two $10-\Omega$ resistors connected in series. Therefore the total resistance is 20Ω.
Applying Ohm's law,
$V=\mathbb{R}$
$20 \mathrm{~V}=1(20 \Omega)$
$\mathrm{I}=1 \mathrm{~A}$
b. When S_{1} is open, the resistance on the top is 10Ω. When S_{2} is closed, the $10-\Omega$ resistor on the bottom is in parallel with the $8-\Omega$ resistor next to it. So the resistance on the bottom is
$\frac{1}{\mathrm{R}_{2}}=\frac{1}{8 \Omega}+\frac{1}{10 \Omega}$
$=\frac{18}{80 \Omega}$
$\mathrm{R}_{2}=4.4 \Omega$
The total resistance of the circuit is
$R_{\text {total }}=10 \Omega+4.4 \Omega=14.4 \Omega$
In this case of S_{1} open, the
current would be
$\mathrm{V}=\mathrm{I} \mathrm{R}$
$20 \mathrm{~V}=1(14.4 \Omega)$
$\mathrm{I}=1.4 \mathrm{~A}$
When S_{1} is closed, the $10-\Omega$ resistor is in parallel with the $2-\Omega$ resistor next to it. So the resistance on the top is
$\frac{1}{\mathrm{R}_{1}}=\frac{1}{10 \Omega}+\frac{1}{2 \Omega}$
$=0.6 \Omega^{-1}$
$\mathrm{R}_{1}=1.7 \Omega$
The total resistance of the circuit is
$R_{\text {total }}=10 \Omega+1.7 \Omega=11.7 \Omega$
In this case of S_{1} closed, the current would be
$\mathrm{V}=\mathrm{I} \mathrm{R}$
$20 \mathrm{~V}=\mathrm{I}(11.7 \Omega)$
$\mathrm{I}=1.7 \mathrm{~A}$
Since the current in the circuit is lower when the resistance is higher with S_{1} closed, the first situation will produce a lower current.

14. is. In the circuit belon calculate the current shown ty the ammeter when both swiches (S) and \$2) are open.
A. If one of the switahes is closed which one would it be se that the curreat
shown by the ammeter was an low as ponible? Explain pour anwer.

KEY VOCABULARY

nument
parallel elietuit
resintance
suries tirsat
veltage

REVISIT THE CHALLENGE

Students should understand that total resistance increases when devices are connected in series and decreases when connected in parallel. Students should be able to express this mathematically for series circuits,

$$
\mathrm{R}_{\text {total }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots
$$

For parallel circuits, students should be able to express this mathematically only if they were guided to this relationship in the activity,
$\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$

