Performance Expectation MS-LS2-1

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

Clarification Statement: Emphasis is on the processes of cycling: crystallization, weathering, deformation, and sedimentation, which are together to form minerals and rocks through the cycling of Earth’s materials.

Assessment Boundary: Assessment does not include the identification and naming of minerals.

Performance Expectation MS-LS2-2

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.

Performance Expectation MS-LS2-3

Develop a model to describe the cycling of matter and energy among living and non-living parts of an ecosystem.

Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems and on defining the boundaries of the system.

Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.

Performance Expectation MS-LS2-4

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations and on evaluating empirical evidence supporting arguments about changes to ecosystems.

Performance Expectation MS-LS3-1

Analyze and interpret data to provide evidence for the effects of resources availability on organisms and populations of organisms in an ecosystem.

Clarification Statement: Emphasis is on cause and effect relationships between resources and the growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.

Performance Expectation MS-LS3-2

Analyze and interpret data to provide evidence for how increases in human populations and per-capita consumption of natural resources impact Earth’s systems.

Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital tools that represent atoms, and intermolecular forces.

Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.

Performance Expectation MS-LS3-3

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Clarification Statement: Examples of the design process include examining human environmental impacts, testing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

Performance Expectation MS-ESS2-1

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Clarification Statement: Emphasis is on the processes of cycling: crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.

Assessment Boundary: Assessment does not include the identification and naming of minerals.

Performance Expectation MS-ESS2-2

Evaluate competing design solutions for maintaining biodiversity and ecosystems services.

Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.

"This performance expectation integrates traditional science content with engineering through a practice or disciplinary core idea.

Performance Expectation MS-ESS3-4

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Clarification Statement: Emphasis is on the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.

Performance Expectation MS-ESS3-5

Evaluate competing design solutions for maintaining biodiversity and ecosystems services.

Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.

"This performance expectation integrates traditional science content with engineering through a practice or disciplinary core idea.
<table>
<thead>
<tr>
<th>Instructional Sequence 1</th>
<th>Instructional Sequence 2</th>
<th>Instructional Sequence 3</th>
<th>Instructional Sequence 4</th>
<th>Instructional Sequence 5</th>
</tr>
</thead>
</table>
| **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. (MS-LS2-2) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.B: Cycle of Matter and Energy Transfer in Ecosystems
Food webs are models that demonstrate how matter and energy are transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and non-living parts of the ecosystem. (MS-LS2-3) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. (MS-LS2-5) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Earth’s systems and the interactions that occur within and among them—energy, matter, and information flows; the cycling of materials; and the interactions of organisms with their environments—are shared. (MS-LS2-1) |
| **MS ES53: Human Impacts on Earth Systems**
Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth, unless the activities and technologies involved are engineered otherwise. (connection DCI to MS-LS2-1, MS-LS2-4 and MS-LS2-5) | **MS ES52: Earth’s Systems**
L2.S.A: Earth’s Materials and Systems
All Earth processes are the result of energy flowing and matter recycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms. (connection DCI to MS-LS2-3 and MS-LS2-4) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.D: Biodiversity and Humans
Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (MS-LS2-5) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Interdependent relationships in ecosystems are cyclically repeated between the living and non-living parts of the ecosystem. (MS-LS2-3) |
| **MS PS1: Matter and Its Interactions**
L1.S.B: Chemical Reactions
Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substance are reorganized into different molecules, and these new substances have different properties from those of the reactants. The total number of each type of atom is conserved, and thus the mass does not change. (connection DCI to MS-PS1-3) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Growth of organisms and population increases are limited by access to resources. (MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth, unless the activities and technologies involved are engineered otherwise. (connection DCI to MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. (connection DCI to MS-LS2-1 and MS-LS2-4) |
| **MS ES53: Earth and Human Activity**
Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth, unless the activities and technologies involved are engineered otherwise. (connection DCI to MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.B: Cycle of Matter and Energy Transfer in Ecosystems
Growth of organisms and population increases are limited by access to resources. (MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Growth of organisms and population increases are limited by access to resources. (MS-LS2-1) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.A: Interdependent Relationships in Ecosystems
Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth, unless the activities and technologies involved are engineered otherwise. (connection DCI to MS-LS2-1) | **MS ES53: Earth and Human Activity**
Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth, unless the activities and technologies involved are engineered otherwise. (connection DCI to MS-LS2-1) |
| **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. (MS-LS2-5) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4) | **MS LS2: Ecosystems: Interactions, Energy, and Dynamics**
L2.C: Ecosystem Dynamics, Functioning, and Resilience
Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. (MS-LS2-5) | **MS ES53: Earth and Human Activity**
Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth, unless the activities and technologies involved are engineered otherwise. (connection DCI to MS-LS2-1) |
Instructional Sequence 1
Science and Engineering Practices
Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena. (MS-LS2-3)

Instructional Sequence 2
Science and Engineering Practices
Developing and Using Models
Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop a model to describe phenomena. (MS-LS2-3)

Instructional Sequence 3
Science and Engineering Practices
Analyzing and Interpreting Data
Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

Instructional Sequence 4
Science and Engineering Practices
Engaging in Argument from Evidence
Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

Construct an oral or written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS2-4)

Instructional Sequence 5
Science and Engineering Practices
Engaging in Argument from Evidence
Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-LS2-5)

Instructional Sequence 6
Science and Engineering Practices
Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Apply scientific principles to design an object, tool, process or system. (MS-ESS3-3)
Crosscutting Concepts
- **Patterns**
 - Patterns can be used to identify cause and effect relationships. (MS-LS2-2)
- **Cause and Effect**
 - Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS3-4)
- **Stability and Change**
 - Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale. (MS-ESS3-1)

Connections to Nature of Science
- **Science Addresses Questions About the Natural and Material World**
 - Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-ESS3-4)
 - Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-ESS3-4)

Connections to Engineering, Technology and Applications of Science
- **Influence of Science, Engineering, and Technology on Society and the Natural World**
 - All human activity draws on natural resources and has both short- and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ESS3-4)
 - All human activity draws on natural resources and has both short- and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ESS3-4)

Connections to Nature of Science
- **Scientific Knowledge Assumes an Order and Consistency in Natural Systems**
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS2-3)
 - All human activity draws on natural resources and has both short- and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ESS3-4)

Connections to Engineering, Technology and Applications of Science
- **Influence of Science, Engineering, and Technology on Society and the Natural World**
 - The use of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; and by differences in such factors as climate, natural resources, and economic conditions. Thus, technology use varies from region to region and over time. (MS-LS2-5) (MS-ESS3-3)