Using Issues as a Context to Enhance Students’ Three-Dimensional Learning

Maia Binding, SEPUP, Lawrence Hall of Science
Dora Kastel, New Visions for Public Schools
NSTA, Atlanta, March 15, 2018

This material is based upon work funded by the National Science Foundation under Grant # NSF DRL 1418235. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Implementing New Standards

Curriculum – instructional materials
Classroom Assessment – formative & summative
Instruction – teaching tools
What is 3-D Learning?

Performance Expectations

Science and Engineering Practices

Disciplinary Core Ideas

Crosscutting Concepts

Links to Common Core
What is 3-D Learning?

The practices are the processes of building and using the core ideas to make sense of the natural and designed world, and the crosscutting concepts hold the discipline together.

Core Ideas

Crosscutting Concepts

Practices
Disciplinary Core Ideas (DCIs)

• **Physical Science**
 • Matter and its interactions
 • Motion and stability: Forces and interactions
 • Energy
 • Waves and their applications in technologies for information transfer

• **Life Science**
 • From molecules to organisms: Structures and processes
 • Ecosystems: Interactions, energy, and dynamics
 • Heredity: Inheritance and variation of traits
 • Biological evolution: Unity and diversity

• **Earth and Space Science**
 • Earth’s place in the universe
 • Earth’s systems
 • Earth and human activity

• **Engineering**
 • Engineering design
Science and Engineering Practices (SEPs)

• Asking Questions and Defining Problems
• Developing and Using Models
• Planning and Carrying Out Investigations
• Analyzing and Interpreting Data
• Using Mathematics and Computational Thinking
• Constructing Explanations and Designing Solutions
• Engaging in Argument from Evidence
• Obtaining, Evaluating, and Communicating Information
Crosscutting Concepts (CCCs)

- Cause and Effect
- Energy and Matter
- Patterns
- Scale, Proportion, and Quantity
- Stability and Change
- Structure and Function
- Systems and System Models
Why Issues?

In order for students to develop a sustained attraction to science and for them to appreciate the many ways in which it is pertinent to their daily lives, classroom learning experiences in science need to connect with their own interests and experiences.

Next Generation Framework

National Research Council, 2011
CHAPTER 1
Wolves in Yellowstone 2
1.1 People and Animals Interacting 4
1.2 Ecological Interactions 10
1.3 Patterns of Interaction Among Organisms 14
1.4 Biotic and Abiotic Factors in Ecosystems 20
1.5 Analyzing Patterns in Ecosystems 26
1.6 Disrupting Ecosystems with Wolves 30

CHAPTER 2
Ecosystem Models 38
2.1 Ecosystem Changes 40
2.2 Life and Death in an Ecosystem 44
2.3 Matter in Ecosystems 48
2.4 Energy Flow in Ecosystems 56
2.5 Energy Tracking .. 60
2.6 Modeling Energy Flow and Matter Cycling in an Ecosystem 64

CHAPTER 3
Interactions Between Populations and Resources 68
3.1 Shopping for Fish ... 70
3.2 Going Fishin’ .. 72
3.3 Three Fisheries ... 76
3.4 Dead Zones .. 82
3.5 Chesapeake Bay Oysters 88

CHAPTER 4
Zebra Mussels 94
4.1 Introducing a New Species 96
4.2 Hudson River Ecosystem 102
4.3 Changing Ecosystems 106
4.4 The Zebra Mussel Problem: 20 Years of Data 114
4.5 A New Mussel in Town 120

CHAPTER 5
Designing Solutions 126
5.1 Solving a Problem ... 128
5.2 Stability and Change 130
5.3 Designing a Solution 134
5.4 Evaluating Solutions 140
5.5 Coral Reefs .. 146
Big Ideas & Phenomena

1. Humans can affect the relationships among organisms in an environment.
2. Natural disasters can affect the transfer of energy and the cycling of matter in ecosystems.
3. The growth of organisms and populations are limited by the available resources.
4. The introduction of a new organism can affect the stability of an ecosystem.
5. Humans are using more resources, causing the need for solutions.
Example Activity

- From a model middle school NGSS-aligned unit on Ecology
- Overarching issue in chapter: invasive species (Zebra mussel in the Hudson River)
- Final activity in the chapter
- Evaluate activity in the 5E cycle
NGSS Alignment

<table>
<thead>
<tr>
<th>DCIs</th>
<th>SEPs</th>
<th>CCCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS LS2.C.1</td>
<td>Asking Questions</td>
<td>Stability and Change</td>
</tr>
<tr>
<td>MS LS2.A.1</td>
<td>Analyzing and Interpreting Data</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>MS LS2.A.2</td>
<td>Engaging in Argument from Evidence</td>
<td>Patterns</td>
</tr>
<tr>
<td>MS LS4.D.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PEs: MS-LS2-4 and MS-LS2-1
Where did you see 3-D learning?

• What could you do with your students throughout a unit/school year to make 3-D learning more explicit?
Other *Disruptions* Presentations

Developing Science Practices: Constructing Explanations and Engaging in Argumentation
- Friday, March 16, 11am-noon
- GWCC C209

NGSS@NSTA Forum Session: Disruptions in Ecosystems: An NGSS-Designed Middle School Unit and PD Model
- Friday, March 16, 12:30-1:30pm
- GWCC B102
Contact Info

- Maia Binding, SEPUP, Lawrence Hall of Science, mbinding@berkeley.edu
- Dora Kastel, New Visions for Public Schools, kastel.dora@gmail.com

- Session Evaluation: www.nsta.org/atlantabrowser
- Thank you to NSF for funding this project!
- Presentation will be available on sepuplhs.org
- Curriculum (2nd Field Test Ed) available on nextgenscience.org (search for Disruptions in Ecosystems)
- Zebra mussel materials (graphing tool, readings) are on www.amnh.org/education/resources/rfl/web/riverecology